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Stochastic resonance in extended bistable systems: The role of potential symmetry
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Comisión Nacional de Energı´a Atómica, Centro Ato´mico Bariloche and Instituto Balseiro (CNEA and UNC),
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We study the role of potential symmetry in a three-field reaction-diffusion system presenting bistability by
means of a two-state theory for stochastic resonance in general asymmetric systems. By analyzing the influence
of different parameters in the optimization of the signal-to-noise ratio, we observe that this magnitude always
increases with the symmetry of the system’s potential, indicating that it is this feature which governs the
optimization of the system’s response to periodic signals.@S1063-651X~99!12505-4#
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I. INTRODUCTION

Since its original proposal as a mechanism accounting
the periodicity in Earth’s ice ages@1#, the phenomenon o
stochastic resonancehas been extensively studied, from bo
the theoretical and experimental points of view@2,3#. Sto-
chastic resonance~SR! is the name coined for the rathe
counterintuitive fact that the response of anonlinearsystem
to a periodic signal may beenhancedthrough the addition of
an optimal amount of noise. One of the key parameters h
is thesignal-to-noise ratio~SNR! at the output.

A vast majority of studies on SR have been done ana
ing a paradigmatic system: a bistable one-dimensio
double-well system. Among such kinds of models there
one that can be singled out:the two-state model@1,4#. Such a
model has proven to be extremely useful in the understa
ing of the SR phenomenon, offering also a simple framew
able to provide analytical results. Most of the studies ha
been carried out in the symmetric potential case. Howe
even in the earliest account of the two-state model@1# the
possibility of potential asymmetry was introduced, with t
conclusion that the symmetric case would be the optim
one. Other authors have also analyzed different aspec
this case~see references in@3#!, for instance considering
equal curvatures of the potential wells@5#, or from the point
of view of residence times@6#. Also higher order resonan
behavior and dc signal detection in nonlinear asymmetr
devices using a perturbative approach have been studied@7#.
However, all those studies correspond to the analysis of z
dimensional or uncoupled systems.

The occurrence of SR in coupled and extended syst
has been the focus of several recent studies~see the citations
in Ref. @3#!. Some of the different aspects that have be
analyzed are the effect of global coupling in dynamical a
neuron models@8#, enhancement of the SR phenomenon d
to coupling@9#, and spatiotemporal SR-like phenomena@10#.
The studies in continuous extended systems are more clo
related to the present work@11–15#.

In this contribution we analyze the role of the symme
in the SR phenomenon in extended systems. We start w
general analysis of SR in asymmetric situations, extend
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the two-state approach@1,4#. In this way we derive genera
expressions for the power spectral density and for the S
for a general two-state system. After discussing a sim
zero-dimensional example, the results are exploited to a
lyze the dependence of the system’s response on the n
intensity and on the degree of symmetry in a spatially
tended reaction-diffusion system. In the last section we c
clude with some final remarks on the influence of the diff
ent parameters and the central role played by the pote
symmetry in the SR of extended systems.

II. THEORETICAL FRAMEWORK: TWO-STATE MODEL
FOR STOCHASTIC RESONANCE

We consider a random system described by a disc
dynamical variablex adopting two possible values:c1 and
c2, with probabilitiesn1,2(t), respectively. Such probabilitie
satisfy the conditionn1(t)1n2(t)51. The equation govern
ing the evolution ofn1(t) @with a similar one forn2(t)51
2n1(t)# is

dn1

dt
52

dn2

dt
5W2~ t !n2~ t !2W1~ t !n1~ t !

5W2~ t !2@W2~ t !1W1~ t !#n1 , ~1!

where theW1,2(t) are the transition ratesout of the x5c1,2
states.

If the system is subject~through one of its parameters! to
a time-dependent signal of the formA cos(vst), up to first
order in the amplitude~assumed to be small! the transition
rates may be expanded as

W1~ t !5m12a1A cos~vst !,
~2!

W2~ t !5m21a2A cos~vst !,

where the constantsm1,2 and a1,2 depend on the detailed
structure of the system under study. Here we remark that
m i ’s, which are the~time-independent! values of theWi ’s
without signal, are in general different from each other a
consequence of the different stability of the two states, a
the same happens to thea i ’s. These considerations are th
main difference between our treatment and the one in R
@4# where bothm15m2 and a15a2 were assumed. Using
Eq. ~2! we can integrate Eq.~1! with the initial condition
5142 ©1999 The American Physical Society
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PRE 59 5143STOCHASTIC RESONANCE IN EXTENDED BISTABLE . . .
x(t0)5x0 and obtain the conditional probabilityn1(tux0 ,t0).
This result allows us to calculate the autocorrelation fu
tion, the power spectrum, and finally the SNR. The details
the calculation are shown in the Appendix. When the sy
metrical case is considered all the results reduce to thos
@4#. For the SNR, up to the relevant~second! order in the
signal amplitudeA, we find the result given by Eq.~A10! in
the Appendix.

The independence of the SNR on the signal frequency
small signal amplitude was well known for symmetric sy
tems@4# and here is found to be valid also when the symm
try is broken. Later on, and in order to characterize the S
independently of both the signal frequency and amplitude
will work with R5R̃/A2 instead ofR̃; however, the results
will only be valid for small enough amplitudes. Hence, t
form for SNR we will use is

R5
p~a2m11a1m2!2

4m1m2~m11m2!
. ~3!

For the sake of completeness and in order to gain ins
into the role of symmetry in the SR of a bistable system,
briefly analyze here a simple one-dimensional system u
the theory described above. However, similar~and more
complete! analyses have been performed in Ref.@7#. In what
follows we will work with nondimensional quantities.

We consider the following stochastic system:

u̇~ t !52~u221!~u1a!1S~ t !1A2 j~ t !, ~4!

wherej(t) is a Gaussian white noise of zero mean and c
relation^j(t)j(t8)&5hd(t2t8). The corresponding double
well potential,

V~u!5
u4

4
1

au3

3
2

u2

2
2@a1S~ t !#u, ~5!

is symmetric fora50 andS(t). Up to first order inS(t),
V(u) has minima (u1 andu2) and a maximum (um) located
at

u1511
S~ t !

2~11a!
, u25211

S~ t !

2~12a!
,

~6!

um52a2
S~ t !

12a2
.

In order to apply the two-state theory described above
set S(t)5A cos(vst) and assume that (vs)

21 is large com-
pared to the characteristic relaxation times in both wells. T
transition rates between the states are given by the Kram
like formulas

Wu1→u2
[W15

AuV9~um!uV9~u1!

2p
expF2

V~um!2V~u1!

h G ,
~7!

Wu2→u1
[W25

AuV9~um!uV9~u2!

2p
expF2

V~um!2V~u2!

h G ,
-
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whereV9 is the second derivative ofV with respect tou. The
parametersm i anda i result in functions ofa andh that can
be analytically calculated as

m15W1uS(t)50 , a152
dW1

dS~ t !U
S(t)50

,

~8!

m25W2uS(t)50 , a25
dW2

dS~ t !U
S(t)50

.

From Eqs.~3! and ~8! we can compute the SNR~R! as a
function of a and the noise intensityh. The parametera
characterizes the symmetry as follows: settinga50 corre-
sponds to modulating around a symmetric situation in wh
both states are equally stable, whileaÞ0 corresponds to
asymmetric situations where the most stable state isu1 for
a.0 andu2 for a,0. However, as the system is invaria
under the simultaneous transformationsa→2a,u→2u,
and S(t)→2S(t), the results forR evaluated ata are the
same as those evaluated at2a. Hence, we will only consider
the casea.0.

In Fig. 1 we depict the results ofR(h) for different values
of a. Note that each curve shows an optimum noise inten
where the SNR has a maximum; this is the typical charac
istic of the SR phenomenon. Furthermore, it can be appr
ated that the value of the maximum ofR increases with the
symmetry of the system~i.e., with the proximity ofa to
zero!. Actually, from the complex~not shown! analytical ex-
pression forR as a function ofa andh, it can be seen that fo
a fixed value ofh, R is maximized by settinga50. Hence
the symmetric situation is the most favorable one for the
phenomenon. In Fig. 2 we show the value of the maxim
of R ~regardingh) plotted as a function ofa, where the
optimization occurring for the symmetric case (a50) is ap-
parent.

In the next section we will analyze the SR phenomenon
a more complicated situation corresponding to a three-fi
reaction-diffusion system in one spatial dimension. In th
model we will find that symmetry plays the same role
increasing the SNR as in the one-dimensional system. F

FIG. 1. SNR as a function of the noise intensity for differe
values of the parameters: the solid line corresponds to modula
around the symmetric situation (a50), the dashed and dotted line
correspond, respectively, to the asymmetric cases witha50.1 and
a50.2.
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5144 PRE 59S. BOUZAT AND H. S. WIO
thermore, we will show that symmetry is the key feature
improving the SNR and that its relevance goes, in so
sense, beyond that of any other relevant characteristic,
as coupling, for example.

III. STOCHASTIC RESONANCE IN EXTENDED SYSTEMS

Here, and in order to investigate general trends of the
phenomenon in extended systems, we will consider a th
field reaction-diffusion system of the activator-inhibitor typ
in one spatial dimension. The relevance of activator-inhib
models for the description of pattern formation phenome
in chemical and biological systems is very well known@16#.
Recently, and in order to describe the experimental res
obtained in chemical systems~Belouzov-Zhabotinsky or
CIMA reactions!, different forms of three-field models~typi-
cally reduced to effective two-field systems! have been stud
ied @17#.

We consider a related model given by the equations

]u~x,t !

]t
5D

]2u~x,t !

]x2
1 f „u~x,t !…2v~x,t !2w~x,t !,

]v~x,t !

]t
5bu~x,t !2gv~x,t !,

~9!

e
]w~x,t !

]t
5n

]2w~x,t !

]x2
1b8u~x,t !2g8w~x,t !,

with f (u)52u1u(u2a)1S, whereu(u) is the unit step
function @u(u)51 for u.0 andu(u)50 for u,0# while a
andS are two additional parameters.

In analogy with the systems studied in@17#, the equation
for the first inhibitor (v) has no diffusive term. In addition
we will consider that the second inhibitor~w! is a fast one
fixing e50. Then for the nowtemporally slavedinhibitor w,
we have

w~x,t !5b8E dx8G~x,x8!u~x8,t !, ~10!

FIG. 2. Maximum ofR (Rmax) as a function ofa. The maximum
of Rmax occurs fora50, which corresponds to modulating around
symmetric situation.
e
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R
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G(x,x8) being the Green function of the third of Eqs.~9! in
the indicated limit@18#, which depends on the boundary co
ditions considered. In this limit the system of Eqs.~9! can be
reduced to an effective two-component system (u and v)
with a nonlocal interaction term, by inserting Eq.~10! into
the first of Eqs.~9!. In this way we have obtained a syste
where the role played by each inhibitor is clearly differe
one acts only locally while the other has a nonlocal char
ter.

We will fix Dirichlet boundary conditions on the thre
fields in @2L,L# @u(6L)5v(6L)5w(6L)50# for
which we have

G~x,x8!5H sinh@k~L2x8!#sinh@k~L1x!#

nk sinh@2kL#
, x,x8

sinh@k~L2x!#sinh@k~L1x8!#

nk sinh@2kL#
, x.x8

~11!

wherek5Ag8/n.
We will focus our analysis on a region of paramete

where the system has two stationary stable patterns@station-
ary linearly stable solutions of Eqs.~9! for u,v, andw# and
one stationary unstable pattern@stationary linearly unstable
solution of Eqs.~9!#. The piecewise linear choice for th
nonlinearityf (u) allows us to calculate these patterns as l
ear combinations of exponentials plus constants@18#. In Fig.
3 we show theu fields for the three patterns for a particul
choice of the parameters. We callU1 the large stable pattern
which has a central activated region (u.a), U2 the small
stable pattern which reduces to the homogeneous null s
tion whenS is set equal to zero, andUm the unstable pattern
A more complete study of the pattern formation of this sy
tem, including the analysis of different regions of paramet
and discussions on the different role played by each inh
tor, can be found in Ref.@18#.

In the region of only two stable patterns we are consid
ing, the deterministic dynamics given by Eqs.~9! drives the
system toward one of the patterns~selected depending on th
initial condition! which is reached asymptotically. If sma
fluctuations are present in the system the fields fluctu

FIG. 3. u fields of the stationary patterns. The solid line corr
sponds to the stable patternu1, the dashed line to the unstab
patternum , and the dotted line to the stable patternu2. Results for
a50.25,D50.3, andS(t)50.025.
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PRE 59 5145STOCHASTIC RESONANCE IN EXTENDED BISTABLE . . .
around one of the stable patterns and transitions betwee
two patterns become possible.

In order to analyze the phenomenon of stochastic re
nance between the stable patternsU1 and U2 we will now
consider the presence of fluctuations in the system and
we will introduce a periodic signal. Fluctuations will be in
troduced in the effective two-equation system equivalen
Eqs. ~9! as additive Gaussian white noise sources of z
mean by writing

]u~x,t !

]t
5D

]2u~x,t !

]x2
1 f „u~x,t !…2v~x,t !

2b8E dx8G~x,x8!u~x8,t !1g1
uj1~x,t !

1g2
uj2~x,t !,

]v~x,t !

]t
5bu~x,t !2gv~x,t !1g1

vj1~x,t !1g2
vj2~x,t !,

~12!

with the j i ’s satisfying

^j i~x,t !j j~x8,t8!&5h d i j d~ t2t8!d~x2x8!. ~13!

Note that thegi
m are constants that couple the noises to

system while the intensity of the fluctuations is determin
by the parameterh.

It has been shown in Ref.@18# that, in a certain region o
parameters~that includes the bistable one on which o
analysis is focused!, the nonequilibrium potential@19# for the
system of Eqs.~12! for Neumann or Dirichlet boundary con
ditions on the three fields in (2L,x,L) is

F@u,v#5E dxF D

Qu
~“u!21V~u,v !

1
b8

Qu
E dx8G~x,x8!u~x!u~x8!G , ~14!

where

V~u,v !52
2

Qu
Eu

f ~u8!du81
2Quvb

QuQv
u21

g

Qv
v222

b

Qv
uv,

~15!

Qu5(g1
u)21(g2

u)2, Qv5(g1
v)21(g2

v)2, and Quv5g1
ug1

v

1g2
ug2

v . The nonequilibrium potential has stationary poin
~vanishing functional derivatives! at the stationary patterns
minima at the stable patterns, and maxima or general
saddle points at the unstable patterns. It also determines
stationary solutionP of the Fokker-Planck equation assoc
ated to Eq.~12! ~in the sense of Ito!, in the limit of smallh,
that is given by

P5Z expS 2
F

h D , ~16!

where Z is a normalization constant@18#. Hence, the non-
equilibrium potential characterizes the most important s
tionary properties of the system.
the

o-

so

o
o

e
d

d
the

-

It is worth mentioning that the nonequilibrium potenti
given in Eq.~14! is valid for the system in Eq.~12! in arbi-
trary spatial dimension, for an arbitrary nonlinear functi
f (u), and with the parameter region of validity being ind
pendent of the choice off (u) @18#. The consideration of only
one spatial dimension and the particular election off (u) are
in order to simplify the calculations, particularly regardin
pattern formation.

The signal will be introduced as a~slow! modulation
through the parameterS by setting S5S(t)5A cos(vst).
With this modulation the system becomes nonstationary
we make an adiabatic assumption similar to the one
adopted in the preceding section~considering small signa
frequencies! that makes the nonequilibrium potential valid
each time for the corresponding value of the signal.

We now analyze the SR phenomenon in our spatially
tended system using the theory presented in Sec. II. To
ceed with such an analysis we identify the two stable p
terns (U1 and U2) with the states of the two-state theor
Hence, the discrete variablex will adopt valuesc1 and c2
according to the system being in the statesU1 and U2, re-
spectively, yielding the result for the SNR in Eq.~3!. The
same result can be obtained considering the space-time
relation function of the fieldu(x,t) that, similarly to what
was discussed in@13,15#, shall give a factorized expressio
with a temporal factor that is coincident with the result f
the autocorrelation ofx(t) obtained in the Appendix@Eq.
~A3!#, leading to Eq.~3! for the SNR. The other factor
which includes the space dependence of theU1 pattern, is
not relevant for the present study. However, the changes
duced in the patterns by the variation of some model par
eter will be reflected in changes in the values ofm i and a i
and, accordingly, will affect the results for the SNR.

In what follows we fix L51,b5b851,g510.026,g8
5n510,g1

u51,g2
u50,g1

v50.05, andg2
v50.01, and leaveD,

a, andh ~the noise intensity! as free parameters. Note th
with the chosen values for thegi

m’s, the only relevant noise
term in the system@Eq. ~12!# is g1

uj1(t) in the equation foru
that appears added to the signal~hence it can be considere
as coming together with the signal!. The parametersg1

v and
g2

v are set different from zero to keep the system inside
parameter region whereF@u,v# as defined in Eq.~14! is
valid as a nonequilibrium potential@18#.

In order to evaluate the transition rates between b
states we discretize the space and the fields as

x→xi , „u~x!,v~x!…→~ ũ1 ,ũ2 , . . . ,ũN ,ṽ1 , . . . ,ṽN!
~17!

and use the Kramers-like formula@20#

WUi→U j
[Wi5

l1

2p
A F i9

uFm9 u
expF2

~Fm2F i !

h G , ~18!

wherel1 is the unstable eigenvalue of the deterministic fl
at the unstable stateUm , F i9 and Fm9 indicate the determi-
nants of the matrix of second order derivatives of the n
equilibrium potential with respect to the discretized fields
the statesUi andUm , respectively, andF i andFm are the
values of the nonequilibrium potential evaluated at the s
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5146 PRE 59S. BOUZAT AND H. S. WIO
tionary statesUi andUm , i 51,2. Finally, in order to com-
pute the SNR as indicated in Sec. II, we calculate the par
etersm i anda i numerically as

m15W1uS(t)50 , a152
dW1

dS~ t !U
S(t)50

,

~19!

m25W2uS(t)50 , a25
dW2

dS~ t !U
S(t)50

.

It is worth noting that the dependence of the Kram
rates in Eq.~18! on the signalS(t) comes in two ways: first,
through the explicit dependence of the nonequilibrium pot
tial on S(t) that only affects the exponential factor, since t
second derivatives of the potential do not depend explic
on S(t). Second, there is an implicit dependence that affe
not only F i andFm but alsoF i9 ,Fm9 , andl1 , and comes
through the dependence of the stationary patterns onS(t). In
obtaininga1 anda2 we neglected the implicit dependence
F i9 ,Fm9 , andl1 on S(t), but kept exactly the dependence
the exponential factor.

In Fig. 4 we show the nonequilibrium potential evaluat
on the different patterns as a function ofD, the diffusion
constant of the activator, forS(t)50 anda50.25. It can be
appreciated that the symmetric situation~where the two
stable states have equal values of the potential! occurs near
D50.3 ~actually atD5Ds50.2956). ForD,Ds the pattern
U1 is more stable thanU2 while for D.Ds we have the
opposite situation. NearD50.5 the stable patternU1 and the
unstable patternUm coalesce and they disappear for larg
values ofD @18#.

In Fig. 5 we show the results for the SNR~R! as a func-
tion of the noise intensity for different values ofD anda. We
see that while keeping constanta50.25@Fig. 5~a!#, the larg-
est values ofR are those forD5Ds , which is the symmetric
situation. Also, if we fixD5Ds @Fig. 5~b!#, any departure of
a from the value 0.25~that is, any departure from the sym
metric situation! reduces the values ofR. Hence, the sym-
metric situation is found to be the most favorable one c
cerning the improvement of SNR. Note that the maximum

FIG. 4. Nonequilibrium potential evaluated at the stationary p
terns as a function of the activator diffusionD for a50.25 and
S(t)50. The solid line corresponds to the unstable patternum , the
dashed line to the stable patternu1, and the dotted line to the stabl
patternu2.
-

s

-

y
ts

r

-
f

theRvs h curve~for fixed values ofa andD), which we will
call Rmax, increases with symmetry and reaches its larg
value for the symmetric situation. In Fig. 6 we showRmax
plotted as a function ofD for a50.25, where it is apparen
that the optimum value of diffusion isD5Ds , correspond-
ing, as indicated, to the symmetric case.

A fact that arises from these results is that, while keep
all the other parameters of the system fixed, there exists
optimal value of diffusion~coupling of the distributed sys
tem! that maximizes SNR. The interesting aspect is that s
an optimal value is the one that makes the potential symm
ric.

t-

FIG. 5. ~a! SNR as a function of the noise intensity fora
50.25 and different values ofD. The solid line corresponds to th
symmetric situationD5Ds , the long-dashed line toD50.35, and
the short-dashed line toD50.25.~b! SNR as a function of the noise
intensity forD5Ds and different values ofa. The solid line corre-
sponds to the symmetric situationa50.25, the dotted line corre
sponds toa50.27, and the dot-dashed line corresponds toa
50.23.

FIG. 6. Maximum of SNR (Rmax) as a function of the activato
diffusion D for a50.25. The maximum ofRmax occurs for the sym-
metric situationD5Ds .
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It is worth mentioning that these results do not contrad
but complete those in@14# where enhancement due to co
pling was found, since in that work only symmetric situ
tions were analyzed. Roughly speaking, the main resul
@14# can be summarized saying that, given two differe
symmetric situations~each one necessarily having differe
values of D and a!, the one with the higher value ofD
produces higher values of SNR. However, we must keep
mind that for a too large value ofD, some of the approxima
tions involved in the calculations may break down@14#.

Here we have studied the dependence of the SNR on
parametersD and a, however, similar results, leading t
identical conclusions, are obtained when the dependenc
SNR on other parameters of the system, such asb,g, or n, is
considered.Rmax is always enhanced when the paramet
are varied in the direction of increasing the potential symm
try and diminish when the asymmetry grows.

It is worth pointing out here that for too large asymm
tries, some of our approximations will break down. For e
ample, consider an extremely asymmetric situation where
barrier for, say, the transition from stateU1 to U2, is much
larger than the barrier for the opposite transition. In suc
case, the values of the noise intensity leading to reason
jumping rates fromU1 to U2 will be far beyond the validity
of the Kramers-like approximation for the inverse transitio

IV. FINAL REMARKS

In this paper we have analyzed the role of potential sy
metry in the SR for a bistable system with spatial extensi
for the case of small signal amplitudes. We started by p
senting an extension of the two-state theory of stocha
resonance@1,4# in order to include situations with differen
stabilities.

As a first step in the analysis of the role of the poten
symmetry, we have used the extended theory to analyze
in a simple example: a~space-independent! double-well sys-
tem. For this case we have found that the symmetric situa
is the optimal one in order to improve the SNR. It is wor
mentioning that we have obtained essentially the same
sults in other different bistable systems: one correspond
to a cusp-shaped bistable potential†in which the Kramers
approach for the transition rates is different from the one
Eq. ~7! @20#‡, and also for an activator-inhibitor bistab
~two-variable! system. Furthermore, this behavior~improve-
ment of SNR with symmetry! seems to be independent of th
way in which the signal is introduced in the system sin
similar results have been found when the modulation w
introduced in other system parameters@for example, the
threshold parametera of Eq. ~4!#.

Besides the analysis of the influence of symmetry on s
chastic resonance, it is important to remark that the m
consideration of asymmetric situations has its own relevan
This is because such bistable asymmetric models provide
example, the appropriate framework for describing SR
voltage-dependent ion channels, as proposed in@22#. In those
systems, the conducting state is associated to a higher-en
well than the nonconducting one.

We also remark here that our analysis and results h
some differences with those found in@23#. First, our result
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for the SNR shows that the well known independence of
SNR on the signal frequency for a small signal amplitude
symmetric systems@4# is also found to be valid when th
symmetry is broken, at variance with those of@23#. Sec-
ondly, if in the system described by Eq.~12! we adoptb8
50 and consider spatial independence (D5n50) it reduces
to the same FitzHugh-Nagumo model discussed in Ref.@23#.
For the bistable region of this~nongradient! resulting system,
the nonequilibrium potential@19# is known for a general way
of introducing fluctuations, and is given byV(u,v), as de-
fined in Eq.~15! @18#. Hence, the claim ofSR in a nonpo-
tential systemmade for the system analyzed in Ref.@23# is
incorrect. However, it is worth remarking here that there
systems without a potential that show SR@21#.

The main goal of our work was the analysis of SR in
extended three-field reaction-diffusion system. We have
cused in the parameter region where the system is bista
that is, where there are only two stationary stable patterns
order to use the two-state theory of SR, we have evalua
the transition rates between the two stable patterns usin
Kramers-like approach exploiting the nonequilibrium pote
tial presented in@18#. The analysis of the results for the SN
in this extended system shows the central role played by
symmetry in improving the SNR. We studied the behavior
Rmax, that is, the maximum of the SNR vsh curve, as the
different model parameters are~not simultaneously! varied,
finding thatRmax always increases with the symmetry of th
potential. This fact leads us to our main result: the optim
values of the different model parameters~for instance, diffu-
sivity or threshold!, regarding the maximization ofRmax,
correspond to those making the potential more symmetri
each situation.

As indicated above, the present analysis complements
results in Ref.@14# where only symmetric situations wer
considered~although in a one-field system!. The study of the
influence of the potential symmetry in other forms of cha
acterizing SR~for instance, those based on information th
oretical approaches!, as well as the analysis of SR in ex
tended systems with aperiodic signals, are under way.
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APPENDIX: CALCULATION OF THE
SIGNAL-TO-NOISE RATIO

Here we follow the procedure of Ref.@4# in order to com-
pute the SNR, generalizing that treatment to include
asymmetric case (m1Þm2 anda1Þa2!. Once Eq.~1! is in-
tegrated we can calculate the correlation function^x(t
1t)x(t)ux0 ,t0& as
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^x~ t1t!x~ t !ux0 ,t0&

5c1
2 n1~ t1tuc1 ,t !n1~ tux0 ,t0!1c1c2 n1~ t

1tuc2 ,t !n2~ tux0 ,t0!1c1c2 n2~ t1tuc1 ,t !n1~ tux0 ,t0!

1c2
2 n2~ t1tuc2 ,t !n2~ tux0 ,t0!. ~A1!

For thet-averaged correlation function
of

e

C~t!5K lim
t0→2`

^x~ t1t!x~ t !ux0 ,t0& Lt , ~A2!

we obtain

C~t!5R01R1 exp~2mutu!1R2 exp~2mutu!cos~vst!

1R3 exp~2mutu!sin~vst!1R4 cos~vst!. ~A3!

Herem5m11m2 and the constantsRi are given by
R05S c2m11c1m2

m11m2
D 2

,

R15
~c22c1!2m1m2

m2
1

A2~c12c2!@c2~a2
2m11a1a2m2!2c1~a1

2m21a1a2m1!#

2m~m21v2!
,

R25
A2~c22c1!~a22a1!AR0~a2m11a1m2!

2m~m21v2!
, ~A4!

R35
A2~c22c1!~a22a1!AR0~a2m11a1m2!

2v~m21v2!
,

R45
A2~c12c2!2~a2m11a1m2!2

2m2~m21v2!
.

the

h

of

the
ncy,
Then, noting thatR0 is just the square of the mean value
x in the absence of signal (R05^x&2uA50), we compute the
t-averagedpower spectral density~PSD! @^S̃(v)& t# as the
Fourier transform ofC(t)2R0. After that, we compute the
one-sided t-averaged PSD@S(v)#, defined forv.0, as

S~v!5^S̃~v!& t1^S̃~2v!& t . ~A5!

We get

S~v!54R1

m

~m21v2!
12R2f2~v!12R3f3~v!

12pR4d~v2vs!, ~A6!

where

f2~v!5
2m~m21v21vs

2!

m412m2v21v412m2vs
222v2vs

21vs
4

,

f3~v!5
2vs~m22v21vs

2!

m412m2v21v412m2vs
222v2vs

21vs
4

.

~A7!

In the one-sidedt-averaged PSD@Eq. ~A6!#, two contribu-
tions can be distinguished: the signal output which is giv
 n

by the d function centered at the signal frequency and
broadband noise output, given by the Lorentzian term„which
is the dominant@o(A0)# part… plus the two additional terms
containing thef i functions.

If, when calculating the PSD, instead ofC(t)2R0 only
C(t) is considered, an extra term@4pR0d(v)# appears in
Eq. ~A6!. Note that a nonvanishing value ofR0 can be origi-
nated either by an asymmetric choice of the values ofc1 and
c2 (c1Þ2c2) or by a difference in the stabilities of bot
states (m1Þm2) even whenc152c2 is considered.

If we consider the symmetric case (m15m2[ã0/2 and
a15a2[ã1/2) and also fix c252c1[c, the constants
R0 ,R2 , andR3 vanish and we recover exactly the result
@4# which is a Lorentzian plus ad function centered at the
signal frequency

S~v!uSym5S 12
A2ã1

2

2~ ã0
21vs

2!
D 4ã0c2

ã0
21v2

1
pA2ã1

2c2

ã0
21vs

2

3d~v2vs!. ~A8!

For the general asymmetric case we defineR̃, the SNR, as
the ratio between the strength of the output signal and
broadband noise output evaluated at the signal freque
obtaining
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R̃5
pR4

R12m/~m21vs
2!1R2f2~vs!1R3f3~vs!

. ~A9!

For sufficiently low signal amplitudes~i.e., smallA) we
can neglect the terms of second order inA in the denomina-
o

n

v.

ev
.

d

ev
tor in Eq. ~A9! and obtain the following approximation fo
R̃, which is independent of the signal frequency:

R̃5
A2p~a2m11a1m2!2

4m1m2~m11m2!
. ~A10!
.

s-
@1# C. Nicolis, Tellus34, 1 ~1982!.
@2# Proceedings of the NATO Advanced Research Workshop

Stochastic Resonance in Physics and Biology, edited by
Mosset al. @J. Stat. Phys.70, 1/2 ~1993!#; Proceedings of the
2nd International Workshop on Fluctuations in Physics a
Biology, edited by A. Bulsaraet al. @Nuovo Cimento D17,
~1995!#.

@3# L. Gammaitoni, P. Ha¨nggi, P. Jung, and F. Marchesoni, Re
Mod. Phys.70, 223 ~1988!.

@4# B. McNamara and K. Wiesenfeld, Phys. Rev. A39, 4854
~1989!.

@5# P. Jung and R. Bartussek, inFluctuations and Order: The New
Synthesis, edited by M. Millones~Springer, New York, 1988!,
p. 35.
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